Teori Dasar Kemagnetan - Kemagnetan adalah kemampuan yang dimiliki oleh sebuah benda untuk menarik atau menolak benda lain di sekitarnya. Kita sering menggunakan sifat kemagnetan benda dalam kehidupan sehari-hari. Mislanya kita membutuhkan bantuan alat seperti kompas, untuk mengetahui arah utara selatan atau keberadaan kutub utara dan kutub selatan magnet bumi.
Teori Dasar Kemagnetan
Perkembangan peradaban manusia tidak terlepas dari penemuan magnet. Mulai dari speaker, telepon, televisi, bel rumah, dan berba gai peralatan yang biasa kita gunakan dalam kehidupan sehari-hari banyak meman faatkan magnet sebagai kom ponen utamanya.
Konsep Gaya Magnet
Istilah magnet sering kita gunakan dalam kehidupan sehari-hari, bahkan kamu juga sering menggunakan magnet. Kata magnet berasal dari bahasa Yunani magnÃtis lÃthos yang berarti batu Magnesian. Magnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama Manisa (sekarang berada di wilayah Turki). Di wilayah tersebut terkandung batu magnet yang ditemukan sejak zaman dulu.
Magnet terbuat dari logam seperti besi dan baja. Magnet memiliki berbagai bentuk dan dinamakan sesuai bentuknya, seperti yang bisa kamu lihat pada Gambar berikut.
Penentuan kutub magnet batang dapat dilakukan dengan percobaan sederhana. Letakkan magnet batang di atas gabus lalu apungkan di permukaan air, maka ujung magnet yang menunjuk ke arah utara adalah kutub utara magnet, dan ujung magnet yang menunjuk arah selatan adalah kutub selatan magnet, seperti pada Gambar berikut.
Magnet selalu memiliki dua kutub, yaitu kutub utara dan kutub selatan. Kutub-kutub yang senama bila didekatkan akan saling tolak menolak, sedangkan kutub-kutub yang berbeda nama bila didekatkan akan saling tarik-menarik. Kutub-kutub ini selalu ada pada setiap magnet walaupun magnet tersebut dipotong menjadi potongan magnet kecil.
(a) Magnet Tidak Senama Tarik Menarik; (b) Magnet Senama Tolak-menolak
Gaya listrik berasal dari adanya interaksi antara muatan listrik, sedangkan gaya magnet berasal dari adanya interaksi antara kutub-kutub magnet yang ditimbulkan oleh gerakan muatan listrik (elektron) pada benda.
, (a) Magnet Elementer Tersebar Acak, (b) Magnet Elementer Tersusun pada Arah Tertentu
Pada Gambar a, kutub utara dan kutub selatan partikel elementer magnet pada benda tersebut tersebar secara acak, sehingga benda tidak memiliki sifat magnet. Pada beberapa jenis logam tertentu, seperti besi dan baja, sejumlah magnet elementer magnet dapat disusun berbaris pada arah tertentu hingga benda bersifat sebagai magnet (Gambar b).
a. Sifat Magnet Bahan
Berdasarkan sifat interaksi bahan terhadap magnet, benda diklasifikasikan menjadi tiga kelompok, yaitu feromagnetik, diamagnetik, dan paramagnetik. Benda-benda yang dapat ditarik kuat oleh magnet termasuk pada kelompok benda feromagnetik, misal besi, baja, kobalt, dan nikel. Benda-benda yang ditarik lemah oleh magnet termasuk pada kelompok benda paramagnetik, misal magnesium, molibdenum, dan lithium. Benda-benda yang tidak ditarik oleh magnet termasuk kelompok benda diamagnetik, misal perak, emas, tembaga, dan bismut.
b. Cara Membuat Magnet
Untuk membuat magnet kita bisa melakukan 3 cara, digosok, induksi dan elekromagnet. Besi dapat dijadikan magnet dengan cara menggosok. Besi digosok dengan arah yang tetap, agar magnet elementer dapat diatur untuk menuju ke satu arah saja. Perhatikan Gambar berikut.
Ujung kutub utara magnet yang digosokkan dari ujung besi B ke A akan mengubah besi menjadi magnet dengan kutub utara pada ujung B dan kutub selatan pada ujung A. Jadi, ujung batang besi yang pertama kali digosok akan memiliki kutub yang sama dengan kutub magnet yang menggosoknya.
Baja dan besi dapat dijadikan magnet dengan cara menginduksi atau mendekatkannya dengan magnet selama beberapa waktu. Perhatikan Gambar berikut.
Sifat magnet menunjukkan bahwa magnet akan saling tarik menarik jika kutub yang berbeda didekatkan, dan tolak-menolak jika kutub yang sama, sehingga ujung B akan menjadi kutub utara dan ujung A akan menjadi kutub selatan. Jadi, dapat disimpulkan bahwa ujung besi atau baja yang berdekatan dengan kutub magnet batang akan memiliki kutub yang berlawanan dengan kutub magnet penginduksinya.
Magnet juga dapat dibuat dengan cara meliliti besi atau baja dengan kawat penghantar yang dialiri arus DC. Magnet yang dibuat dengan cara demikian disebut elektromagnet. Mengapa arus DC? Karena arus DC dapat menyamakan arah magnet elementer pada besi atau baja. Kutub magnet besi atau baja yang terbentuk tergantung pada arah lilitan kawat penghantar. Jika arah arus berlawanan dengan arah jarum jam, maka ujung A besi atau baja tersebut akan menjadi kutub utara dan ujung B akan menjadi kutub selatan. Sebaliknya, jika arah arus searah dengan jarum jam, maka ujung A besi atau baja akan menjadi kutub selatan dan ujung B akan menjadi kutub utara. Perhatikan Gambar berikut.
Dengan pola lilitan tersebut (searah jarum jam), maka ujung A akan menjadi kutub selatan dan ujung B akan menjadi kutub utara.
c. Penerapan Elektromagnet dalam Kehidupan Sehari-hari
Gejala elektromagnet sering digunakan masyarakat dalam kehidupan sehari-hari. Beberapa penerapan elektromagnet tersebut da pat ditemui pada bel listrik, saklar listrik, dan telepon kabel. Jika di sekitarmu tidak terdapat benda-benda tersebut, tidak perlu risau, cermatilah penjelasan berikut!
(1) Bel listrik
Coba perhatikan bel listrik yang ada di sekitarmu (jika ada). Selidiki cara kerja bel listrik tersebut! Pada saat tombol bel listrik ditekan, rangkaian arus menjadi tertutup dan arus mengalir pada kumparan. Aliran arus listrik pada kumparan ini mengakibatkan besi di dalamnya menjadi elektromagnet yang mampu menggerakkan lengan pemukul untuk me mukul bel sehingga berbunyi.
(2) Saklar
Di setiap rumah yang menggunakan aliran listrik, hampir semuanya menggunakan saklar. Saklar berfungsi untuk memutuskan dan meng hubungkan arus listrik pada rangkaian listrik. Khusus untuk bentuk saklar seperti pada gambar berikut.
Saklar mulai bekerja ketika saklar membentuk rangkaian tertutup. Lilitan kawat akan berfungsi sebagai elek tromagnet yang menarik ujung besi ke bawah. Setelah besi tertarik ke bawah, ujung besi lainnya akan menyimpang ke kanan dan mendorong tangkai ke kiri sehingga tangkai kiri dan kanan akan saling bersentuhan untuk mengalirkan arus listrik. Ketika arus mengalir, maka beban (lampu atau alat elektronik lainnya) akan menyala.
(3) Telepon Kabel
Tahukah kamu bahwa telepon kabel juga menggunakan prinsip kemagnetan? Saat menggunakan telepon, seseorang akan menerima pesan (men dengar) sekaligus mengirim pesan (berbicara). Prinsip kerja telepon pada dasarnya mengubah energi listrik menjadi energi bunyi. Pada saat ada pembicaraan, energi listrik mengalir pada kabel telepon menimbulkan efek elektromagnet yang kekuatannya berubah-ubah sehingga mampu menggetarkan diafragma besi lentur pada speaker telepon. Getaran pada speaker inilah yang akhirnya menggetarkan udara di sekitarnya dan memberikan efek “dengar” bagi telinga kita.
d. Cara menghilangkan kemagnetan bahan
Sifat kemagnetan bahan dapat dihilangkan dengan cara memukulmukul, memanaskan, dan meliliti magnet dengan arus bolak balik atau AC. Pada prinsipnya, sifat kemagnetan dapat dihilangkan dengan cara mengacak arah magnet elementer.
e. Medan Magnet
Pada materi awal, telah dibahas tentang materi medan magnet bumi. Selain bumi, benda magnetik juga dapat menghasilkan medan magnet. Daerah di sekitar magnet yang dapat mempengaruhi magnet atau benda lain disebut medan magnet. Pola-pola yang dibentuk oleh pasir besi seperti gambar berikut.
Merupakan bentuk garis gaya magnet yang digunakan untuk menggambarkan medan magnet. Medan magnet terbesar terletak pada ujung-ujung kutub magnet. Hal ini ditunjukkan dengan banyaknya pasir besi yang ditarik oleh ujung-ujung kutub magnet (garis-garis gaya magnetnya sangat rapat).
f. Induksi Magnet
Konsep induksi magnet ber awal dari tidak terkendalinya putaran jarum kompas yang ada di kapal laut saat petir menyambar. Percobaan yang dilakukan oleh Hans Christian Oersted (1820) yang menunjukkan bahwa arus listrik dapat menimbulkan medan magnet. Caranya adalah dengan mengamati pergerakan jarum kompas saat diletakkan di dekat kabel yang dialiri arus listrik. Percobaan ini kemudian dikenal dengan Percobaan Oersted. Arah medan magnet dan arah arus dapat di tunjukkan dengan menggunakan tangan kanan seperti Gambar di bawah ini menunjukkan arus listrik dan B menunjukan medan magnet.
Jika pada kawat lurus, medan magnet terbentuk melingkari arah arus, bagaimana dengan kabel yang dibentuk melingkar dan kumparan? Perhatikan Gambar berikut.
Pada kumparan (Gambar a) medan magnet tampak melingkari kabel, tetapi pada kumparan (Gambar b) medan magnetnya seolaholah membentuk kutub utara dan selatan pada ujung-ujungnya, persis seperti pada magnet batang.
Teori Kemagnetan Bumi
Bumi memiliki kutub utara dan selatan. Kutub utara magnet bumi berada di sekitar kutub selatan bumi, dan kutub selatan magnet bumi berada di sekitar kutub utara bumi. Ketidaktepatan kutub utara dan kutub selatan magnet bumi disebut deklanasi. Selain adanya ketidak tepatan penunjukan arah kutub utara dan kutub selatan magnet bumi, ternyata medan magnet bumi juga membentuk sudut dengan horizontal bumi, atau yang disebut dengan sudut inklinasi.
Medan magnet bumi berfungsi untuk melindungi penduduk bumi dari radiasi kosmik (partikel listrik yang dihasilkan oleh matahari atau benda-benda langit lainnya) yang mengancam kesehatan. Namun, karena adanya medan magnet bumi, partikel listrik tidak dapat masuk ke seluruh permukaan bumi, tetapi hanya akan masuk ke kutub-kutub bumi. Saat menabrak atmosfer bumi, partikel listrik tersebut diionisasi (peristiwa le pasnya elektron dari nukleon) dan membentuk plasma lemah (gas super yang dipanaskan agar elektron ter lepas dari nukleon). Tampilan indah cahaya plasma inilah yang kemudian dikenal sebagai aurora.
Gaya Lorentz
a. Konsep Gaya Lorentz
Kawat berarus yang berada dalam medan magnet akan mengalami gaya yang disebut dengan Gaya Lorentz. Adanya Gaya Lorentz dalam percobaan menimbulkan simpangan pada alumunium foil. Semakin banyak baterai yang dipasang pada rangkaian, maka semakin besar arus listrik dan besar Gaya Lorentz-nya. Hal ini menunjukkan bahwa arus listrik sebanding dengan gaya yang ditimbulkan, demikian juga dengan perubahan medan magnet yang diberikan. Akibat dari arah arus (I) dan arah medan magnet (B) saling tegak lurus, maka secara matematis, besarnya Gaya Lorentz dituliskan sebagai berikut.
F = B . I . L
Keterangan:
F = gaya Lorentz (Newton)
B = medan magnet tetap (Tesla)
I = kuat arus listrik (Ampere)
L = panjang kawat berarus yang masuk ke dalam medan magnet (meter)
Penentuan arah Gaya Lorentz, dapat dilakukan dengan menggunakan kaidah tangan kanan. Perhatikan gambar berikut.
Contoh Soal :
Sebuah kawat tembaga sepanjang 10 m dialiri arus listrik sebesar 5 mA. Jika kawat tembaga tersebut tegak lurus berada dalam medan magnet sebesar 8 Tesla, berapakah Gaya Lorentz yang timbul?
Diketahui:
L = 10 m
I = 5 mA = 0,005 A
B = 8 T
Ditanya:
Gaya Lorentz (F)?
Jawab:
F = B I L = 8 . 0,005 . 10 = 0,4 N Jadi, Gaya Lorentz yang timbul sebesar 0,4 N
b. Penerapan Gaya Lorentz pada Motor Listrik
Motor listrik digunakan untuk mengubah energi listrik menjadi energi gerak. Beberapa motor listrik yang digunakan dalam kehidupan sehari-hari, misalnya motor listrik pada kipas angin untuk yang berfungsi untuk menggerakkan baling-baling.
Motor listrik memiliki beberapa komponen, diantaranya magnet tetap dan kumparan. Jika ada arus listrik yang mengalir pada kumparan yang terletak dalam medan magnet maka kumparan tersebut akan mengalami Gaya Lorentz sehingga kumparan akan berputar.
Induksi Elektromagnetik
Menurut Faraday, arus listrik dapat dihasilkan dengan cara menggerakkan magnet batang keluar masuk kumparan. Temuan ini diterapkan pada generator listrik yang mengubah energi gerak menjadi energi listrik.
a. Generator
Generator adalah alat yang digunakan untuk merubah energi gerak (kinetik) menjadi energi listrik. Energi gerak yang dimiliki generator dapat diperoleh dari berbagai sumber energi alternatif, misalnya dari energi angin, energi air, dan sebagainya. Generator dibedakan menjadi generator AC (Alternating Current) dan generator DC (Direct Current). Generator AC atau alternator dapat menghasilkan arus listrik bolakbalik dengan cara menggunakan cincin ganda, sedangkan generator DC dapat menghasilkan arus listrik searah dengan cara menggunakan komutator (cincin belah).
b. Dinamo AC-DC
Dinamo adalah generator yang relatif kecil seperti yang digunakan pada sepeda. Mengapa lampu sepeda kayuh dapat menyala meskipun tidak diberi baterai? Mengapa nyala lampu akan semakin terang apabila kita mengayuh pedal sepeda dengan lebih cepat? Ternyata pada sepeda terdapat dinamo yang berfungsi sebagai sumber energi listrik untuk menyalakan lampu. Dinamo adalah alat yang berfungsi untuk merubah energi gerak menjadi listrik.
Cara kerja dinamo dan generator hampir sama, termasuk penggunaan satu cincin yang dibelah menjadi dua (komutator) pada dinamo DC dan cincin ganda pada dinamo AC. Perbedaan dinamo dengan generator terletak pada dua komponen utama dinamo, yaitu rotor (bagian yang bergerak) dan stator (bagian yang diam).
Saat sepeda dikayuh dengan cepat, kumparan pada dinamo akan bergerak cepat sehingga gaya gerak listrik (GGL) induksi yang dihasilkan menjadi lebih kuat dan energi listrik yang dihasilkan menjadi lebih banyak. Selain dengan mempercepat putaran kumparan, penggunaan magnet yang kuat, memperbanyak jumlah lilitan, dan penggunaan inti besi lunak dalam dinamo juga dapat mengakibatkan GGL induksi yang dihasilkan menjadi lebih kuat.
c. Transformator
Berdasarkan penggunaannya, transformator dibagi menjadi dua jenis, yaitu transformator step-down dan transformator step-up. Transformator step-down berfungsi untuk menurunkan tegangan listrik, sedangkan transformator step-up berfungsi untuk menaikkan tegangan listrik.
Transformator pada dasarnya terdiri atas lilitan primer dan lilitan sekunder yang dihubungkan dengan menggunakan inti besi. Lilitan primer yang mendapat tegangan AC akan menginduksi inti besi hingga menjadi magnet. Perubahan arah arus AC membuat medan magnet yang terbentuk berubah-ubah, sehingga menghasilkan tegangan AC pada ujung-ujung kumparan sekunder.
Besar kecilnya tegangan keluaran yang dihasilkan transformator sangat dipengaruhi oleh jumlah lilitan pada kumparan primer dan sekunder. Jika jumlah lilitan primernya lebih banyak daripada jumlah lilitan sekunder, maka tegangan pada kumparan sekunder juga akan lebih kecil daripada tegangan pada kumparan sekunder, dan transformator tersebut disebut transformator step down. Namun jika jumlah lilitan primernya lebih sedikit daripada jumlah lilitan sekunder, maka tegangan pada kumparan sekunder akan lebih besar daripada tegangan pada kumparan primer, dan transformator tersebut disebut transformator step up.
Pada transformator ideal, energi listrik yang masuk ke dalam kumparan primer akan dipindahkan seluruhnya ke dalam kumparan sekunder. Hal ini mengakibatkan besar efisiensi transformator menjadi 100% atau secara matematis dituliskan sebagai berikut.
Keterangan:
W p = energi primer
Ws = energi sekunder
I p = arus
primer
I s = arus sekunder
N p = lilitan primer
Ns = lilitan sekunder
V p = tegangan primer
Vs = tegangan sekunder
Pada kenyataannya, tidak pernah dapat dibuat tranformator dengan efisiensi sebesar 100%, karena biasanya sebagian energi listrik yang masuk ke dalam kumparan primer akan diubah menjadi kalor. Perubahan energi listrik menjadi kalor ini salah satunya disebabkan oleh adanya arus Eddy pada inti besinya.
Perhitungan efisiensi trafo (Æž ) yang tidak ideal dapat dilakukandengan menggunakan rumus berikut.
keterangan:
Pout =
daya listrik pada kumparan sekunder.
Pin = daya listrik pada kumparan primer.
Perbandingan lilitan primer dengan lilitan sekunder sebuah
transformator adalah 4:10. Jika kuat arus primer 5 ampere, berapakah kuat arus
sekunder?
Penyelesaian:
Diketahui:
NP : NS
= 4 : 10,
IP= 5 A.
Ditanyakan: IS
= ?
Jawab:
IS = (NP
/ NS) x IP
IS =
(4/10) x 5
IS = 2 A
Jadi kuat arus sekundernya 2 Ampere.
Posting Komentar